

БЕЗЖИЗНЕ**N**2ЫЙ ГАЗ

Специализированное информационно-аналитическое издание ООО «Челябинский компрессорный завод»

...правильное представление об азоте получается только тогда, когда узнаем, что в чистом кислороде животные не могут долго жить, даже умирают, и что азот воздуха, хотя лишь медленно и мало-помалу, образует разнообразные соединения, часть которых играет важнейшую роль в природе...

Д. Менделеев

Уважаемые коллеги!

В современной промышленности потребность в «безжизненном» газе – азоте – как инертной рабочей среде постоянно растет. Азот различных марок применяется в металлургической, пищевой, нефтехимической, нефтедобывающей, приборостроительной, горнодобывающей промышленности для технологических процессов, создания инертной среды и систем пожаротушения. При этом, все больше предприятий, где требуются достаточные объемы азота, отдают предпочтение строительству собственных компрессорных газоразделительных станций, отказываясь от его доставки в баллонах. Кроме того, в ряде случаев, например, при непрерывном технологическом процессе или для систем пенного пожаротушения, других вариантов, кроме наличия на предприятии азотной станции, не существует.

В издании освещаются специальные решения $e2\tau$ и ООО «Челябинский компрессорный завод» для технологических процессов промышленных предприятий и систем компрессионнопенного пожаротушения.

Руководитель проектов ООО «ЧКЗ» **Шамиль Ялалетдинов**

АЗОТ, ВОДА И ПОЖАРНЫЕ ТРУБЫ

Новое техническое решение компрессионного пенного пожаротушения для шахт и объектов со взрывоопасными средами, объединяющее азотную компрессорную и насосную пенно-водную станции.

Стр. 20

Руководитель проектов **ЯЛАЛЕТДИНОВ Шамиль Раисович** Тел.: 8-919-111-777-9 8 (351) 216-50-50 (доб. 993) E-mail: e2t@chkz.ru

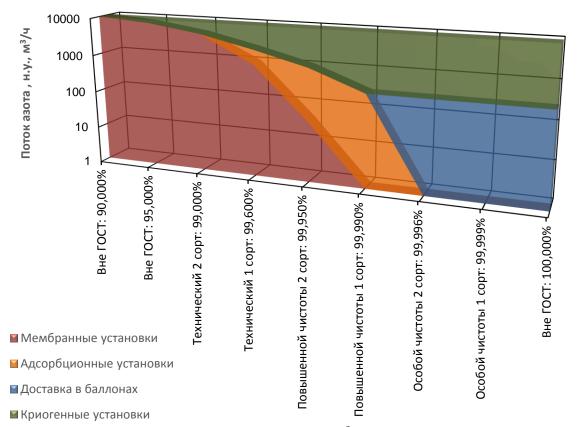
Руководитель ДГО **ХАБИРОВ Константин Борисович** Тел.: 8-919-111-77-21 8 (351) 216-50-50 (доб. 905, 906) E-mail: ngd@chkz.ru

Инженер-конструктор, редактор **ЛАЙКО Константин Константинович** Тел.: 8 (351) 216-50-50 (доб. 980) E-mail: laiko@chkz.ru

Издание: №2 от 24.05.16 Подписано в печать: 26.05.16 Тираж: 500 экз. 4: тел /факс: 8 (35.1) 216.50.50

454085, г. Челябинск, пр. Ленина, 2-Б, а/я 8814; тел./факс: 8 (351) 216-50-50; Официальный сайт: www.chkz.ru; e-mail: e2t@chkz.ru; информационный портал: http://energy2time.ru/

БЕЗЖИЗНЕННЫЙ ГАЗ


Азот (от греч. azoos – безжизненный, по лат. nitrogenium – «рождающий «селитру») – двухатомный инертный газ, один из самых распространенных элементов на Земле. Его основная масса (около $4\cdot10^{15}$ т) сосредоточена в свободном состоянии в атмосфере. В воздухе свободный азот (в виде молекул N_2) составляет 78,09% по объему (или 75,6% по массе), не считая его незначительных примесей в виде аммиака и оксидов.

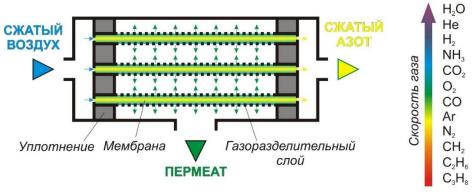
Безжизненность азоту придает характерное свойство не поддерживать процессы горения, дыхания и окисления, что было установлено в 1772 г. Д. Резерфордом, сжигавшим фосфор и другие вещества в стеклянном колоколе и обнаружившем после сгорания «удушливый газ». Ученые того времени еще не знали, что образующийся газ – азот, но его соединение с селитрой уже широко применялось в хозяйстве в качестве удобрения (калия азотнокислого KNO₃). Именно инертность, безжизненность азота в дальнейшем привела к его широкому распространению в подавляющем большинстве отраслей промышленности, начиная от сельскохозяйственной и пищевой и заканчивая нефтегазовой и приборостроительной, а также системами автоматического пожаротушения.

СПОСОБЫ ПОЛУЧЕНИЯ

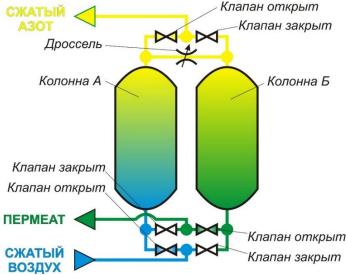
Способ получения азота, в первую очередь, **устанавливает его качество** – марку, сорт (объемную долю), регламентируемые ГОСТ 9293-74. Предприятие с технологическими процессами и оборудованием, требующим применения азота как рабочей среды, в зависимости от необходимой марки, может получать его **4-мя основными способами:**

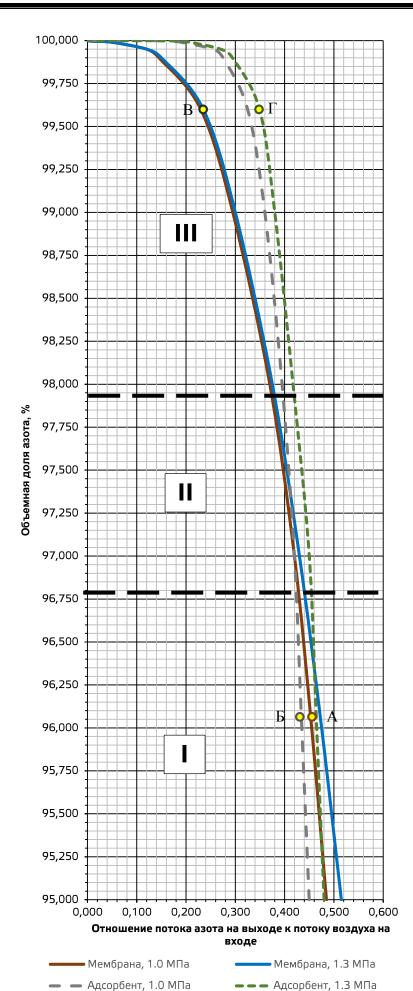
Марка азота и его объемная доля

Границы применения газоразделительных установок **обусловлены эффективностью способа получения**. При отсутствующих или невысоких требованиях к чистоте азота и большом потреблении целесообразно применять мембранные установки, для получения более чистого азота – адсорбционные. В случае, когда требуется наивысшая степень чистоты и высокая производительность альтернативы криогенным установкам не существует.


ТЕХНОЛОГИЯ ФИЛЬТРАЦИИ

Достаточно большая доля промышленных объектов (55...65%) имеет технологические процессы, потребность в азоте которых покрывается применением мембранных или адсорбционных азотно-воздушных компрессорных станций.


В основе мембранной и адсорбционной технологий получения азота заложен принцип его фильтрации из воздуха. Таким образом, газоразделительная установка представляет собой фильтр, тонкость и эффективность которого зависит от установленного фильтрующего элемента (мембраны или адсорбента), давления, температуры и скорости прохождения через него потока воздуха.


Мембранный газоразделительный фильтр состоит из полого волокна с нанесенным газоразделительным слоем. Фильтрация происходит за счет малой скорости проникновения через газоразделительный слой азота и значительно более высокой скорости проникновения других газов, входящих в состав воздуха.

На вход фильтра подается сжатый воздух низкого давления (не более 1,5 МПа) класса чистоты не ниже 1.4.1 (ГОСТ 8573-1-2010, см. также Приложение Б). Азот задерживается в мембране и поступает на выход, а проникшие через газоразделительный слой газы (обогащенный кислородом воздух) сбрасываются в атмосферу, в сеть или сжигаются. Перед подачей в фильтр для повышения эффективности газоразделения сжатый воздух может подогреваться.

Адсорбционный газоразделительный фильтр состоит из особого вещества (адсорбента) – молекулярного сита, которое поглощает (адсорбирует) из воздуха определенные газы, в данном случае – кислород. Классический фильтр имеет 2 колонны. К колонне A подается сжатый воздух низкого давления (не более $1,5\,\mathrm{M}\Pi\mathrm{a}$) класса чистоты не ниже 1.4.1 (ГОСТ 8573-1-2010). Поглощенный кислород и часть других газов задерживается в ней, а азот направляется к выходу. При этом часть полученного азота (до 20%) дросселируется в колонну B для удаления ранее накопленного пермеата (регенерации адсорбента колонны). Электромагнитные клапана регулируют потоки газов, обеспечивая поочередность работы колонн и непрерывность подачи азота.

Чистота азота на установившемся режиме фильтрации зависит от соотношения потока азота на выходе и потока воздуха на входе. Иными словами, при сохранении потока азота постоянным, его чистоту (объемную долю) можно повысить увеличением потока воздуха.

Существуют 3 характерные зоны применения:

— зона преобладающей эффективности мембранной технологии: для получения азота одной чистоты и равных объемов мембране требуется меньший объем воздуха, чем адсорбенту.

II – зона перемежаемости эффективностей мембранной и адсорбционной технологий: для получения азота одной чистоты и равных объемов мембране и адсорбенту требуется примерно одинаковый объем воздуха.

III – зона преобладающей эффективности адсорбционной технологии: для получения азота одной чистоты и равных объемов мембране требуется значительно больший объем воздуха, чем адсорбенту.

Разумеется, границы зон носят условный характер. Ощутимая разница в потреблении сжатого воздуха проявляется для высших (от 99,600%) и низших (до 96,000%) марок азота. В других случаях выбор технологии определяется многими другими факторами, которые выясняются на стадии подбора или проектирования азотно-воздушных станций:

- требуемым объемом азота;
- требуемой точкой росы;
- условиями эксплуатации, в т.ч. квалификацией персонала;
- капитальными затратами;
- затратами на обслуживание;
- объемно-планировочными требованиями;
- личными представлениями заказчика и др.

Пример 1. Пусть требуется получить азот давлением 1,0~MПа, чистотой 96,0% и потоком $10,0~\text{м}^3/\text{мин}$ (н.у.). Определим, сколько сжатого воздуха понадобится для обеих технологий.

Используя красную сплошную кривую определим для мембранной технологии отношение выходного потока азота к входному потоку воздуха (т. A, ≈ 0.46). Это означает, что 46% от поступившего воздушного потока перейдет в азот, а 54% - в пермеат. Рассчитаем в первом приближении требуемый поток воздуха от компрессорной установки (установок): $10.0:0.46=21.7~{\rm M}^3/{\rm Muh}$ (н.у.).

Используя зеленую пунктирную кривую определим это же отношение для адсорбционной технологии (т. Б, ≈ 0.44) и произведем аналогичный расчет: $10.0:0.44=22.7~{\rm M}^3/{\rm MMH}$ (н.у.).

Очевидно, что при использовании адсорбционной технологии в данном случае ежеминутно будет производится лишний $1\,\mathrm{M}^3$ сжатого воздуха.

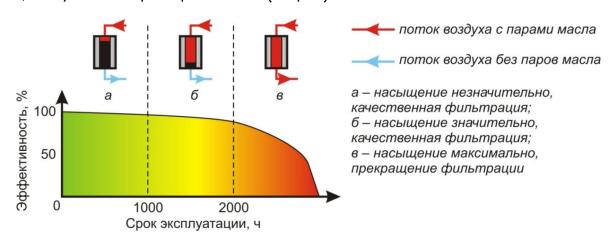
Пример 2. Пусть требуется получить азот давлением 1,3 МПа, чистотой 99,6% и потоком 10,0 м³/мин (н.у.). Определим, сколько сжатого воздуха понадобится для обеих технологий.

Используя синюю сплошную кривую определим для мембранной технологии отношение выходного потока азота к входному потоку воздуха (т. В, ≈ 0.24). Это означает, что 24% от поступившего воздушного потока перейдет в азот, а 76% - в пермеат. Рассчитаем в первом приближении требуемый поток воздуха от компрессорной установки (установок): $10.0:0.24=41.7~{\rm M}^3/{\rm Muh}$ (н.у.).

Используя оранжевую пунктирную кривую определим это же отношение для адсорбционной технологии (т. Б, ≈ 0.44) и произведем аналогичный расчет: $10.0:0.34=29.4~\mathrm{m}^3/\mathrm{мин}$ (н.у.).

Очевидно, что при использовании мембранной технологии в данном случае ежеминутно будет производится лишние $12.3~{\rm M}^3$ сжатого воздуха.

ПОДГОТОВКА ВОЗДУХА

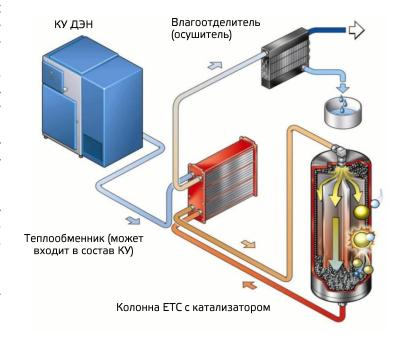

Для эффективного отделения азота сжатый **воздух должен быть тщательно подготов- лен** (очищен). Основными загрязнителями служат механические примеси, пыль, продукты износа узлов трения и углеводородные соединения, попадающие в сжатый воздух как на стадии всасывания, так генерируемые самой компрессорной установкой.

Азотные станции БКК (МКС) АМУ имеют 2 типовых исполнения систем подготовки воздуха – «Стандарт» и «Оптим». Оба исполнения обеспечивают оптимальный баланс качества сжатого воздуха, стоимости станции, стоимости технического обслуживания и надежности очистки.

Параметр	Ед. изм.	БКК (МКС) АМУ «Стандарт»	БКК (МКС) АМУ «Оптим»
Схема	-		
		Сепаратор циклонный СЦ	Сепаратор циклонный СЦ
		Фильтр частиц ФВ-1	Фильтр частиц ФВ-1
		Осушитель рефрижераторный ОВР	-
		Фильтр частиц и масла ФВ-0,01	Фильтр частиц и масла ФВ-0,01
Устройства очистки	_	•	Осушитель адсорбционный ОВА
Устроиства очистки	-	-	Фильтр частиц ФВ-1
		Фильтр частиц и масла ФВ-0,001	-
		Фильтр угольный ФВ-0,003	-
		-	CKP «EcoTec Converter»*
		-	Фильтр частиц ФВ-1
Точка росы	٥C	+3+10	-40 60
Содержание масла	мг/м ³	≈ 0,001	≤0,001
Класс чистоты (ГОСТ 8573-1)	-	1.4.1	1.1.1; 1.1.0
Гарантированный срок эффективной очистки	ד	20004000	1400016000
Вероятность прохода масла к потребителю	-	ЕСТЬ	HET
Срок службы мембран относительный	%	100	250
Стоимость капитальная относительная	%	100	170
Стоимость обслужива- ния относительная	%	100	145 газ при физико-химическом процессе в при-

 ⁻ система каталитического разложения (СКР) углеводородов на воду и углекислый газ при физико-химическом процессе в присутствии специального катализатора

Исполнение «Стандарт» следует выбрать для ответственных и общепромышленных технологических процессов при достаточно жестких требованиях к маслосодержанию и невысоких к влагосодержанию (вне отрицательного диапазона температур). Своевременная смена фильтрующих элементов масляных фильтров обеспечит стабильно высокое надежное качество азота, исключив попадание масла в азот через перепускные клапаны фильтров или при насыщении угольного фильтроэлемента (см. рис.)



Исполнение «Оптим» следует выбрать для ответственных технологических процессов, с жесткими требованиями к масло- и влагосодержанию и абсолютным исключением попадания масла в азот, т.к. катализатор вступает в реакцию с углеводородами в сжатом воздухе пропорционально их концентрации, что служит его главным преимуществом перед фильтрационно-осушительной.

Система применяется совместно с установками и станциями, построенными на основе маслозаполненных компрессоров, на предприятиях пищевой, химической промышленности, приборостроения и отраслях, где требуется высокое качество сжатого воздуха наряду с высокими техническими показателями и необходимостью надежной постоянной очистки как альтернатива безмасляным машинам.

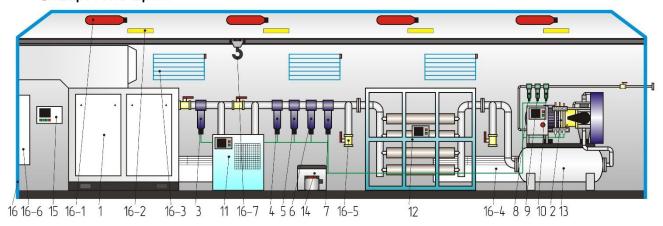
Отсутствие масляных фильтров с перепускными клапанами и угольного фильтра, склонного к насыщению маслом создает самые мягкий режим эксплуатации мембранной газоразделительной установки и резко повышает ее ресурс. Исполнение «Оптим» допускает хранение объемов азота в ресиверах вне отапливаемых помещений в зимнее время с температурой -40...-60 °С

БКК (МКС) АМУ «Стандарт»

БКК (МКС) АМУ «Стандарт» — азотная станция общепромышленного назначения на базе винтовых электрокомпрессорных установок ДЭН "Оптим" (с частотно регулируемой производительностью), подающих специально подготовленный сжатый воздух для газоразделительной мембранной установки АМУ.

ПРИМЕНЕНИЕ:

- наполнение трубопроводов и емкостей нефтехимических и нефтегазовых предприятий при проведении плановопредупредительных работ и ремонтов;
- обеспечение инертной среды в металлургических процессах отжига, закалки, пайки цементации и т.д.
- наполнение хранилищ пищевых продуктов для замедление процессов гниения и окисления.


ПРЕИМУЩЕСТВА:

- стабильное качество азота на всем протяжении срока службы мембран;
- лучшее соотношение «цена / качество азота»;
- независимость качества азота от качества всасываемого воздуха благодаря системе подготовки сжатого воздуха;
- высокий срок службы и надежность мембранной газоразделительной установки;
- полная заводская готовность станции, доставка к месту работы стандартными транспортными средствами по дорогам общего пользования;
- **быстрый монтаж на месте** эксплуатации благодаря предустановленному оборудованию, необходимости в ровной прочной площадке (фундамент не требуется), подводе электрической и пневматической линий;
- простая передислокация станции в другое место эксплуатации.

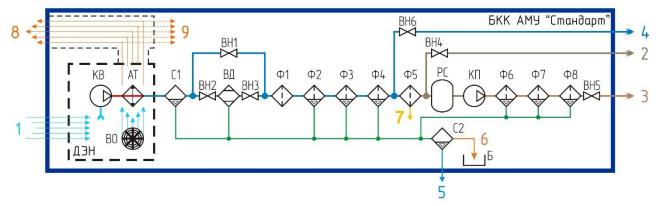
ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ:

Таблица технических параметров охватывает весь номенклатурный ряд типовых станций. **По желанию заказчика возможно изготовление станции под специфические требования.**

Наименование	Ед. изм.	Диапазон значений
Производительность азота		до 36,0
Давление азота кон. ном. изб.		1,0 (до 40,0)
Объемная доля азота (ГОСТ 9293-74)	%	9599,96
Марка азота (ГОСТ 9293-74)		не нормируется; технический 2 сорт; технический 1 сорт; повышенной чистоты 2 сорт
Производительность воздуха	м ³ /мин	
Давление воздуха кон. Ном. изб.	МПа	0,81,3
Класс чистоты воздуха (ГОСТ 8573-1-2010)	-	1.4.1
Точка росы сжатого воздуха	°C	+3
Содержание масла в сжатом воздухе	мг/м ³	≤0,001
Кол-во потоков азота	-	1 или 2
Кол-во потоков воздуха	-	0 или 1
Тип осушителя сжатого воздуха	-	рефрижераторный
Способ удаления масляных фракций из сжатого воздуха		фильтрация
Габариты	ММ	8000x2900x3100 (наименьшая) 12000x2900x3100 (наибольшая)

Поз.	Наименование	Типоразмер	Кол-во
1	Установка компрессорная винтовая	ДЭН	1 или 2
2	Установка компрессорная поршневая дожимная	кп-д	1
3	Сепаратор циклонный	СЦ	1 или 2
4	Фильтр воздушный	ФВ-1	1 или 2
5	Фильтр воздушный	ФВ-0,01	1 или 2
6	Фильтр воздушный	ФВ-0,001	1 или 2
7	Фильтр воздушный угольный	ФВ-0,003	1 или 2
8	Фильтр воздушный высокого давления	HD-(0,01/MF)	1
9	Фильтр воздушный высокого давления	HD-(0,01/SMF)	1
10	Фильтр воздушный высокого давления угольный	HD-(0,01/AK)	1
11	Осушитель рефрижераторный	OBP	1
12	Установка газоразделительная мембранная азотная	АМУ	1
13	Ресивер горизонтальный	РΓ	1
14	Сепаратор водомасляный	UFS	1
15	Система интеллектуального управления	Metacentre SX	1
16	Блок-контейнер стандартный		1
16-1	Огнетушитель порошковый		6, 8 или 12
16-2	Система внутреннего и наружного освещения		1
16-3	Клапан воздушный автоматический		4 или 6
16-4	Обогреватель электрический		2 или 4
16-5	Арматура трубопроводная	-	1 компл.
16-6	Устройство вводно-распределительное		1
16-7	Таль ручная червячная на монорельсе		1

Примечание: поз. с 16-1 по 16-7 входят в стандартную комплектацию поз. 16.


Примечание: спецификация дана для типовой станции и может быть изменена согласно особенностям проекта.

ПРИНЦИП ДЕЙСТВИЯ:

Винтовая компрессорная установка ДЭН, основанная на двухвинтовом компрессоре КВ, всасывает поток атмосферного воздуха 1. После сжатия и первичной очистки воздух охлаждается в теплообменном аппарате АТ и поступает на дальнейшую подготовку. Масловоздушный сепаратор С1 удаляет из воздуха основную часть капельного масла и влаги. Рефрижераторный осушитель ВД более тщательно удаляет влагу из сжатого воздуха (точка росы +3 °С). При закрытых вентилях ВН2 и ВН3 и открытом ВН1 обеспечиваются работа станции в обход осушителя ВД. Фильтр Ф1 очищает сжатый воздух от механических примесей и продуктов износа (тонкость фильтрации 1 мкм), фильтр Ф2 удаляет механические примеси (тонкость фильтрации 0,01 мкм) и масло (остаточная концентрация 0,01 мг/м3). Фильтр Ф3 тщательно удаляет примеси масла (остаточная концентрация 0,001 мг/м3). Фильтр Ф4 содержит фильтрующий элемент из активированного угля и обеспечивает очистку от паров и запахов масла. Задвижка ВН6 позволяет отбирать из пневмосети поток сжатого воздуха 4 класса не ниже 1.4.1. по ГОСТ 8573-1-2010 с давлением около 1,1 МПа.

Мембранная азотная установка **Ф5** фильтрует поступающий сжатый воздух. Сброс отфильтрованных газов потоком **7** (пермеата), как правило, воздуха, обогащенного кислородом, может осуществляться в атмосферу, в отдельный отводящий трубопровод или на сжигание. Вентиль **ВН4** позволяет отбирать из пневмосети поток азота низкого давления **2** (1,0 МПа). При необходимости азот может быть дожат поршневой компрессорной установкой **КП** (максимально до 40,0 МПа), получающей азот из компенсационного ресивера **РС**. После дожатия

азот очищается фильтрами высокого давления: **Ф6** - от продуктов износа (тонкость фильтрации 0,01 мкм) и масла (остаточная концентрация масла 0,1 мг/м3); **Ф7** - от масла (остаточная концентрация 0,01 мг/м3); **Ф8** - от паров и запахов масла (активированный угольный фильтроэлемент). Вентиль **ВН5** позволяет отбирать поток азота высокого давления **3**.

Тепло, выделяемое при сжатии, отводится от компрессорной установки **ДЭН** с помощью встроенных вентилятора **BO** и охладителя **AT** и направляется либо за пределы контейнера потоком **8**, либо внутрь контейнера потоком **9** для обогрева и снижения электропотребления на работу обогревателей. Отделяемый в процессе работы сепараторами, фильтрами и осушителями конденсат в виде масловодяной эмульсии направляется в сепаратор **C2**, где происходит ее разделение на воду и масло. Вода может быть направлена в обычную канализацию потоком **5**. Масло сливается по пути **6** в емкость **Б**, которая при наполнении сдается на вторичную переработку.

ПЕРЕДОВЫЕ РЕАЛИЗОВАННЫЕ ПРОЕКТЫ:

БКК-2,4/13-2 AMУ-60/95 (1,0) "Стандарт" Нефть-Газ (ОАО "Самаранефтегаз")

БКК-0,82/10-1 АМУ-7/99,5 (0,6) "Стандарт" (ГК "Rockwool")

БКК-1/7-1 АМУ-15/99 (1,0) "Стандарт" (ООО "Провита")

БКК-5,2/13-1 АМУ-150/90 (0,5) "Стандарт" (ОАО "СМП-Нефтегаз")

МКС-20/15-1 АМУ-300/99 (1,8) "Стандарт" Нефть-Газ (Ильский НПЗ)

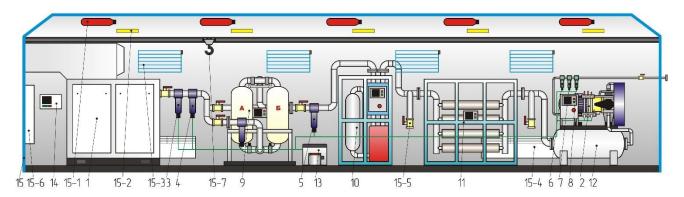
Блок-контейнер модульной компрессорной станции с винтовыми и дожимными поршневыми компрессорными установками и системой интеллектуального управления

БКК (МКС) АМУ «Оптим» Нефть-Газ

БКК (МКС) АМУ «Оптим» Нефть-Газ – специально разработанная для нефтегазовой отрасли азотно-воздушная модульная станция, основанная на винтовых компрессорных установках ДЭН и азотных мембранных установок АМУ с высокоэффективной системой подготовки сжатого воздуха и способная работать во взрывоопасной зоне.

ПРИМЕНЕНИЕ:

- продувка трубопроводов и оборудования нефтяных предприятий и месторождений азотом перед проведением ремонтных работ;
- создание инертной среды в нефтегазовых резервуарах для обеспечения взрыво- и пожаробезопасности;
- подача азота на нужды установки аминовой очистки газа и установки получения серы;
- воздух КиПа для пневмоприводов регулирующей и отсечной арматуры;
- воздух для технических нужд месторождения.


ПРЕИМУЩЕСТВА:

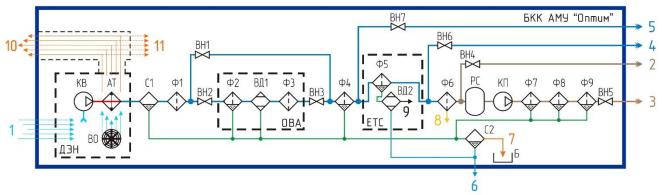
- одновременная выработка воздуха и азота;
- 100% резервирование всего оборудования;
- 2 потока азота: низкого (0,6 МПа) и среднего давления (4,0 МПа);
- обеспечение работы станции общепромышленного исполнения во взрывоопасной **зоне** (создание избыточного давления внутри станции);
- плавное регулирование чистоты азота и производительности сжатого воздуха (при необходимости);
- независимость качества азота от качества всасываемого воздуха благодаря системе подготовки сжатого воздуха;
- высокий срок службы и надежность мембранной газоразделительной установки;
- полная заводская готовность станции, доставка к месту работы стандартными транспортными средствами по дорогам общего пользования;
- **быстрый монтаж на месте** эксплуатации благодаря предустановленному оборудованию, необходимости в ровной прочной площадке (фундамент не требуется), подводе электрической и пневматической линий;
- простая передислокация станции в другое место эксплуатации.

ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ:

Таблица технических параметров охватывает весь номенклатурный ряд типовых станций. По желанию заказчика возможно изготовление станции под специфические требования.

Параметр			Диапазон значений	
Производительность азота ном., н.у.			8,412,6	
Производительность воздуха ном, н.у.	для азотной линии	м ³ /мин	23,0 (до 36,0)	
производительность воздуха ном, н.у.	для воздушной линии		0,2612,0	
Давление конечное ном. изб.	для азотной линии	МПа	0,6 (4,0)	
давление конечное ном. изо.	для воздушной линии	IVII IA	0,8	
Класс чистоты воздуха (ГОСТ 8573-1-	для азотной линии		1.1.0	
2010)	для воздушной линии	_	1.1.1	
Точка росы сжатого воздуха		°C	-40 (-60)	
Тип осушителя сжатого воздуха		-	адсорбционный	
Способ удаления масляных фракций из	сжатого воздуха		Каталитическое разложение	
Объемная доля азота (ГОСТ 9293-74)		%	99,6	
Марка азота (ГОСТ 9293-74)		-	технический 1 сорт	
Мощность общая (ориентировочно)	кВт	700 (900)		
Масса (ориентировочно)	КГ	45000 (50000)		
Габариты типового контейнера	MM	12000x2900x3100		
Кол-во типовых контейнеров		-	4	

Поз.	Наименование	Типоразмер	Кол-во
1	Установка компрессорная винтовая	ДЭН	14
2	Установка компрессорная поршневая дожимная	кп-д	18
3	Сепаратор циклонный	СЦ	14
4	Фильтр воздушный	ФВ-1	18
5	Фильтр воздушный	ФВ-0,01	18
6	Фильтр воздушный высокого давления	HD-(0,01/MF)	18
7	Фильтр воздушный высокого давления	HD-(0,01/SMF)	18
8	Фильтр воздушный высокого давления	HD-(0,01/AK)	18
9	Осушитель адсорбционный	OBA	14
10	Система каталитической очистки воздуха	ETC	12
11	Установка газоразделительная мембранная азотная	АМУ	12
12	Ресивер горизонтальный	РГ	14
13	Сепаратор водомасляный	UFS-SP	12
14	Система интеллектуального управления	Metacentre SX	1
15	Блок контейнер стандартный	6000x2900x3100 8000x2900x3100 10000x2900x3100, 12000x2900x3100	18
15-1	Огнетушители порошковые	-	10 или 12
15-2	Система внутреннего и наружного освещения	-	1 компл.
15-3	Клапан воздушный автоматический	-	6 или 8
15-4	Обогреватель электрический	-	6 или 8
15-5	Арматура трубопроводная	-	1 компл.
15-6	Устройство вводно-распределительное	-	1
15-7	Таль ручная червячная на монорельсе	-	1

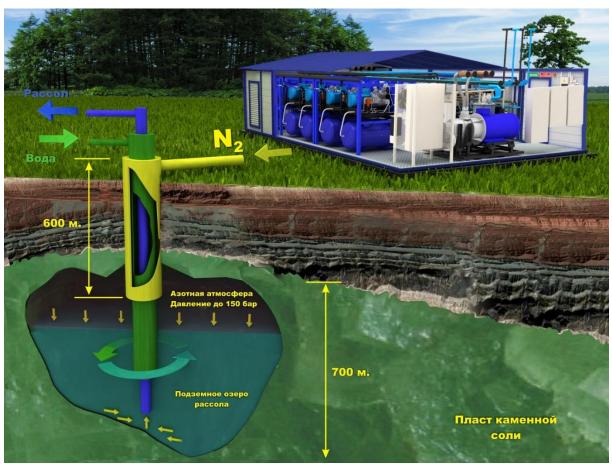

Примечание: поз. с 15-1 по 15-7 входят в стандартную комплектацию поз. 15.

Примечание: спецификация дана для типового исполнения и может быть изменена согласно особенностям проекта.

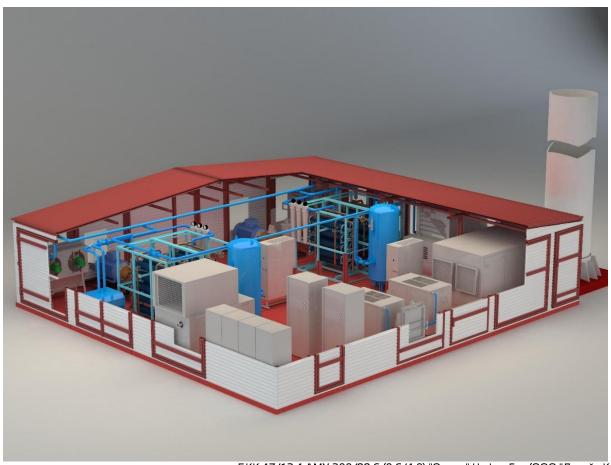
ПРИНЦИП ДЕЙСТВИЯ:

Винтовая компрессорная установка **ДЭН**, основанная на двухвинтовом компрессоре **КВ**, всасывает поток атмосферного воздуха **1**. После сжатия и первичной очистки воздух охлаждается в теплообменном аппарате **АТ** и поступает на дальнейшую подготовку. Масловоздушный сепаратор **С1** удаляет из воздуха основную часть капельного масла и влаги, а воздушный фильтр **Ф1** (тонкость фильтрации 1 мкм) предотвращает попадание в пневмосеть продуктов износа.

Адсорбционный осушитель **ВД** со встроенными предварительным **Ф2** (тонкость фильтрации 0,01 мкм, остаточная концентрация масел 0,01 мг/м³) и последующим **Ф3** (тонкость фильтрации 1 мкм) фильтрами обеспечивает удаление из сжатого воздуха влаги (стандартно точка росы -40 °C). При закрытых вентилях **ВН2** и **ВН3** и открытом **ВН1** обеспечиваются работа станции в обход осушителя **ВД**. Фильтр **Ф4** (тонкость фильтрации 0,01 мкм, остаточная концентрация масел 0,01 мг/м³) предотвращает попадание мелких частиц адсорбента и продуктов износа в систему каталитической очистки воздуха **ЕТС**, где происходит расщепление молекул углеводородов, содержащихся в сжатом воздухе, с применением специального катализатора на углекислый газ и воду. Вода может быть направлена непосредственно в канализацию потоком **6**, а углекислый газ сброшен в атмосферу потоком **9**. Вентиль **ВН7** позволяет отбирать из пневмосети сжатый воздух потоком **5** не ниже класса 1.1.2. по ГОСТ 8573-1-2010 с давлением около 1,1 МПа. Вентиль **ВН6** позволяет отбирать из пневмосети сжатый воздух потоком **4** не ниже класса 1.1.0 по ГОСТ 8573-1-2010 с давлением около 1,0 МПа.



Мембранная азотная установка **Ф6** фильтрует поступающий сжатый воздух. Сброс отфильтрованных газов потоком **8** (пермеата), как правило, воздуха, обогащенного кислородом, может осуществляться в атмосферу, в отдельный отводящий трубопровод или на сжигание. Вентиль **ВН4** позволяет отбирать из пневмосети поток азота низкого давления **2** (1,0 МПа). При необходимости азот может быть дожат поршневой компрессорной установкой **КП** (максимально до 40,0 МПа), получающей азот из компенсационного ресивера **РС**. После дожатия азот очищается фильтрами высокого давления: **Ф7** – от продуктов износа (тонкость фильтрации 0,01 мкм) и масла (остаточная концентрация масла 0,1 мг/м³); **Ф8** – от масла (остаточная концентрация 0,01 мг/м³); **Ф9** – от паров и запахов масла (активированный угольный фильтроэлемент). Вентиль **ВН5** позволяет отбирать поток азота высокого давления **3**.


Тепло, выделяемое при сжатии, отводится от компрессорной установки **ДЭН** с помощью встроенных вентилятора **BO** и охладителя **AT** и направляется либо за пределы контейнера потоком **10**, либо внутрь контейнера потоком **11** для обогрева и снижения электропотребления на работу обогревателей. Отделяемый в процессе работы сепараторами, фильтрами и осушителями конденсат в виде масловодяной эмульсии направляется в сепаратор **C2**, где происходит ее разделение на воду и масло. Вода может быть направлена в канализацию потоком **6**. Масло сливается потоком **7** в емкость **Б**, которая при наполнении сдается на вторичную переработку нефтепродуктов.

ПЕРЕДОВЫЕ РЕАЛИЗОВАННЫЕ ПРОЕКТЫ:

БКК-1,6/13-1 АМУ-25/99 (1,1) "Оптим" Нефть-Газ (ГК "РусГазИнжиниринг")
БКК-1,71/13-1 АМУ-25/98 (0,6) "Оптим" Нефть-Газ (ОАО "Сургутнефтегаз")
БКК-2,4/13-2 АМУ-60/95 (1,0) "Оптим" Нефть-Газ (ОАО "Самаранефтегаз")
БКК-2/15-1 АМУ-24/99,5 (1,3) "Оптим" Нефть-Газ (ООО "Петробайт")
БКК-20/13-1 АМУ-150/99,6 (1,0) "Оптим" Нефть-Газ (ОАО "Новатэк")
БКК-20/13-2 АМУ-200/95 (1,0) "Оптим" Нефть-Газ (ОАО "Татнефть")
БКК-20/16-1 АМУ-10/95 (1,6) АМУ "Оптим" Нефть-Газ (ОАО "Газпром")
БКК-26,6/13-2 АМУ-108/1,3 "Оптим" Нефть-Газ (ООО "РН-Пурнефтегаз")
БКК-4,4/13-2 АМУ-0,5/99 (1,3) "Оптим" Нефть-Газ (ЗАО "Ванкорнефть")
БКК-46/13-2 АМУ-390/97 (0,8) "Оптим" Нефть-Газ (УП "Муборакнефтьгаз", месторож. "Алан", респ. Узбеки-
стан)
БКК-46/13-2 АМУ-390/97 (0,8) "Оптим" Нефть-Газ (УП "Муборакнефтьгаз", месторож. "Шуртан", респ. Узбеки-
стан)
БКК-47/13-4 АМУ-300/99,6 (0,6/4,0) "Оптим" Нефть-Газ (ООО "Лукойл-Коми")
БКК-6,8/13-2 АМУ-100/95 (1,3) "Оптим" + БКК-17/10-2 АМУ-80/95 (1,0) "Оптим" + БКК-21,8/10-2 АМУ-
100/0,8-95 (0,8) "Оптим" Нефть-Газ (ООО "Премиум инжиниринг")
БКК-67/13-2 АМУ-2400/90 (15,0) "Оптим" Нефть-Газ (ОАО "Подземнефтегаз")
БКК-9,3/13-1 АМУ-72/99,5 (1,0) "Оптим" Нефть-Газ (ООО "Новокуйбышевский завод катализаторов")

БКК-67/13-2 АМУ-2400/90 (15,0) "Оптим" Нефть-Газ для подачи рассола из пласта каменной соли

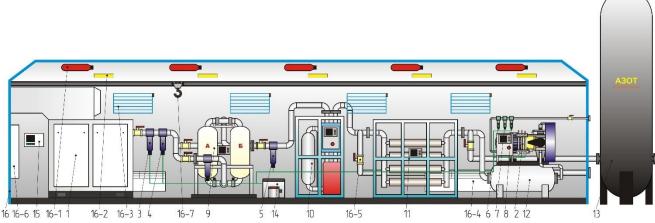
БКК-47/13-4 АМУ-300/99,6 (0,6/4,0) "Оптим" Нефть-Газ (ООО "Лукойл-Коми") с приточно-вытяжной вентиляцией, обеспечивающей повышенное давление внутри станции

БКК (МКС) АМУ «Оптим» Энерго

БКК (МКС) АМУ «Оптим» Энерго – специально разработанная для электростанций азотно-воздушная компрессорная станция, основанная на компрессорных установках ДЭН "Оптим" и газоразделительной мембранной установке АМУ. Как правило, станция состоит из 2-х типовых контейнеров, производит сжатый азот и воздух, а также снабжается сейсмоустойчивыми ресиверами.

ПРИМЕНЕНИЕ:

- технологические системы тепло- и гидроэлектростанций;
- подготовка газовых рабочих сред.

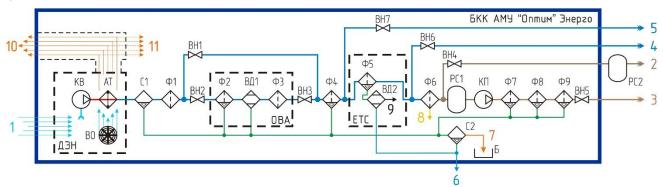

ПРЕИМУЩЕСТВА:

- возможность **одновременной выработки воздуха и азота** несколькими потоками с разным давлением;
- снабжение воздухосборниками большого объема для резервного хранения сжатого воздуха или азота;
- независимость качества азота от качества всасываемого воздуха благодаря системе подготовки сжатого воздуха;
- полная заводская готовность станции, доставка к месту работы стандартными транспортными средствами по дорогам общего пользования;
- **быстрый монтаж на месте** эксплуатации благодаря предустановленному оборудованию, необходимости в ровной прочной площадке (фундамент не требуется), подводе электрической и пневматической линий;
- простая передислокация станции в другое место эксплуатации.

ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ:

Таблица технических параметров охватывает весь номенклатурный ряд типовых станций. **По желанию заказчика возможно изготовление станции под специфические требования.**

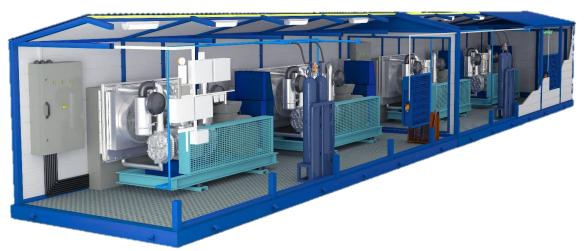
Параметр		Ед. изм.	Диапазон значений	
Производительность азота ном., н.у.		м ³ /мин	0,155,0	
Производитов ности воздуха ном нау	для азотной линии	м ³ /мин	0,516,0	
Производительность воздуха ном, н.у.	для воздушной линии		0,540,0	
Давление конечное ном. изб.	для азотной линии	МПа	0,61,3 (35,0)	
давление конечное ном. изо.	для воздушной линии	1411.10	0,81,3	
Класс чистоты воздуха	для азотной линии	_	1.1.1	
(ΓΟCT 8573-1-2010)	для воздушной линии		1.4.1	
Точка росы сжатого воздуха		٥C	-40 (-60)	
Тип осушителя сжатого воздуха		-	адсорбционный	
Способ удаления масляных фракций из	сжатого воздуха		каталитическое разложение	
Объемная доля азота (ГОСТ 9293-74)		%	97,099,6	
		-	не нормируется	
Марка азота (ГОСТ 9293-74)			технический 2 сорт	
			технический 1 сорт	
Мощность общая (ориентировочно)		кВт	55,01000,0	
Кол-во потоков азота		-	12	
Кол-во потоков сжатого воздуха		ı	1	
			8000x2900x3100	
Габариты типового контейнера		MM	10000x2900x3100	
		12000x2900x3100		
Масса типового контейнера (ориентиро	КГ	от 6000		
Кол-во типовых контейнеров	-	14		
Объем ресивера (воздухосборника)	м ³	350		
Кол-во ресиверов (воздухосборников)			18	


Поз.	Наименование	Типоразмер	Кол-во
1	Установка компрессорная винтовая	дэн	14
2	Установка компрессорная поршневая дожимная	КП-Д	18
3	Сепаратор циклонный	СЦ	14
4	Фильтр воздушный	ФВ-1	18
5	Фильтр воздушный	ФВ-0,01	18
6	Фильтр воздушный высокого давления	HD-(0,01/MF)	18
7	Фильтр воздушный высокого давления	HD-(0,01/SMF)	18
8	Фильтр воздушный высокого давления	HD-(0,01/AK)	18
9	Осушитель адсорбционный	OBA	14
10	Система каталитической очистки воздуха	ETC	12
11	Установка газоразделительная мембранная азотная	АМУ	12
12	Ресивер горизонтальный	РГ	1
13	Ресивер (воздухосборник) вертикальный	ВВ	18
14	Сепаратор водомасляный	UFS-SP	12
15	Система интеллектуального управления	Metacentre SX	1
16	Блок контейнер стандартный	6000x2900x3100 8000x2900x3100 10000x2900x3100, 12000x2900x3100	18
16-1	Огнетушители порошковые	-	10 или 12
16-2	Система внутреннего и наружного освещения	-	1 компл.
16-3	Клапан воздушный автоматический	-	6 или 8
16-4	Обогреватель электрический	-	6 или 8
16-5	Арматура трубопроводная	-	1 компл.
16-6	Устройство вводно-распределительное	-	1
16-7	Таль ручная червячная на монорельсе	-	1

Примечание: поз. с 16-1 по 16-7 входят в стандартную комплектацию поз. 16.

Примечание: спецификация дана для типового исполнения и может быть изменена согласно особенностям проекта.

ПРИНЦИП ДЕЙСТВИЯ:


Винтовая компрессорная установка ДЭН, основанная на двухвинтовом компрессоре КВ, всасывает поток атмосферного воздуха 1. После сжатия и первичной очистки воздух охлаждается в теплообменном аппарате **AT** и поступает на дальнейшую подготовку. Масловоздушный сепаратор С1 удаляет из воздуха основную часть капельного масла и влаги, а воздушный фильтр Ф1 (тонкость фильтрации 1 мкм) предотвращает попадание в пневмосеть продуктов износа. Адсорбционный осушитель ВД со встроенными предварительным Ф2 (тонкость фильтрации 0,01 мкм, остаточная концентрация масел 0,01 мг/м³) и последующим **ФЗ** (тонкость фильтрации 1 мкм) фильтрами обеспечивает удаление из сжатого воздуха влаги (стандартно точка росы -40 °C). При закрытых вентилях ВН2 и ВН3 и открытом ВН1 обеспечиваются работа станции в обход осушителя ВД. Фильтр Ф4 (тонкость фильтрации 0,01 мкм, остаточная концентрация масел 0,01 мг/м³) предотвращает попадание мелких частиц адсорбента и продуктов износа в систему каталитической очистки воздуха ЕТС, где происходит расщепление молекул углеводородов, содержащихся в сжатом воздухе, с применением специального катализатора на углекислый газ и воду. Вода может быть направлена непосредственно в канализацию потоком 6, а углекислый газ сброшен в атмосферу потоком 9. Вентиль ВН7 позволяет отбирать из пневмосети сжатый воздух потоком 5 не ниже класса 1.1.2. по ГОСТ 8573-1-2010 с давлением около 1,1 МПа. Вентиль **ВН6** позволяет отбирать из пневмосети сжатый воздух потоком **4** не ниже класса 1.1.0 по ГОСТ 8573-1-2010 с давлением около 1,0 МПа.

Мембранная азотная установка Ф6 фильтрует поступающий сжатый воздух. Сброс отфильтрованных газов потоком 8 (пермеата), как правило, воздуха, обогащенного кислородом, может осуществляться в атмосферу, в отдельный отводящий трубопровод или на сжигание. Вентиль ВН4 позволяет отбирать из пневмосети поток азота низкого давления 2 (1,0 МПа). Может быть установлен ресивер РС2 (группа ресиверов или воздухосборников) для обеспечения хранения резервного объема азота низкого давления. Ресивер РС2 может поставляться и для линий 4 и 5. При необходимости азот может быть дожат поршневой компрессорной установкой КП (максимально до 40,0 МПа), получающей азот из компенсационного ресивера **РС1**. После дожатия азот очищается фильтрами высокого давления: **Ф7** – от продуктов износа (тонкость фильтрации 0,01 мкм) и масла (остаточная концентрация масла 0,1 мг/м 3); **Ф8** – от масла (остаточная концентрация 0,01 мг/м³); **Ф9** – от паров и запахов масла (активированный угольный фильтроэлемент). Вентиль **ВН5** позволяет отбирать поток азота высокого давления 3. Тепло, выделяемое при сжатии, отводится от компрессорной установки ДЭН с помощью встроенных вентилятора ВО и охладителя АТ и направляется либо за пределы контейнера потоком 10, либо внутрь контейнера потоком 11 для обогрева и снижения электропотребления на работу обогревателей. Отделяемый в процессе работы сепараторами, фильтрами и осушителями конденсат в виде масловодяной эмульсии направляется в сепаратор С2, где происходит ее разделение на воду и масло. Вода может быть направлена в канализацию потоком 6. Масло сливается потоком 7 в емкость Б, которая при наполнении сдается на вторичную переработку нефтепродуктов.

ПЕРЕДОВЫЕ РЕАЛИЗОВАННЫЕ ПРОЕКТЫ:

БКК-0,82/13-1 АМУ-1/99 (0,7) "Оптим" (ЗАО "НГ-Энерго")
БКК-11,4/11-2 АМУ-140/99,6 (0,8) "Оптим" Энерго (ОАО "Генерирующая компания")
БКК-44/10-2 АМУ-50/97 (1,0) "Оптим" Энерго (Навоинская теплоэлектростанция, респ. Узбекистан)

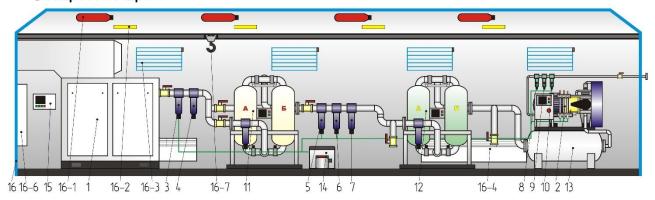
Блок-контейнер дожимных компрессорных установок в бескапотном исполнении с баллонами высокого давления

БКК (МКС) ААУ «Стандарт»

БКК (МКС) ААУ «Стандарт» – азотно-воздушная компрессорная станция, построенная на базе винтовых маслозаполненных компрессорных установок ДЭН и газоразделительных адсорбционных установок ААУ, позволяющих получить азот высших марок (ГОСТ 9293-74) с низкой точкой росы (стандартно -40 °С). Станция также содержит оборудование по подготовке сжатого воздуха до класса 1.1.1 по ГОСТ 8573-1-2010, который может быть частично отобран для нужд потребителей до его поступления на газоразделительную установку, и дожимную компрессорную установку КП-Д для получения азота среднего или высокого давления.

ПРИМЕНЕНИЕ:

• нефтехимические, нефтегазовые, приборостроительные предприятия, требующие применения в технологических процессах **азота высокой чистоты**.


ПРЕИМУЩЕСТВА:

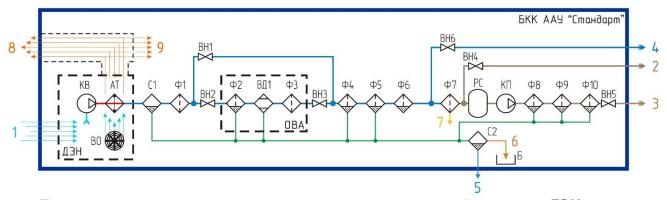
- полная автоматизация станции;
- достижение **практически абсолютной чистоты азота** с объемной долей до 99,996% простым и надежным методом адсорбции;
- продолжительный срок службы адсорбента;
- **достижение низших точек росы** благодаря дополнительному осушающему воздействию адсорбента (до -70 °C);
- независимость качества азота от качества всасываемого воздуха благодаря системе подготовки сжатого воздуха;
- полная заводская готовность станции, доставка к месту работы стандартными транспортными средствами по дорогам общего пользования;
- **быстрый монтаж на месте** эксплуатации благодаря предустановленному оборудованию, необходимости в ровной прочной площадке (фундамент не требуется), подводе электрической и пневматической линий;
- простая передислокация станции в другое место эксплуатации.

ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ:

Таблица технических параметров охватывает весь номенклатурный ряд типовых станций. По желанию заказчика возможно изготовление станции под специфические требования.

Параметр		Значение
Производительность ном., н.у.	м ³ /мин	0,510,0
Давление конечное ном. изб.	МПа	0,735,0 (40,0)
Объемная доля азота (ГОСТ 9293-74)	%	99,60099,996
		технический 1 сорт;
Марка азота (ГОСТ 9293-740	_	повышенной чистоты 2 сорт;
Mapka aso1a (1 OC1 3235-740	_	повышенной чистоты 1 сорт;
		особой чистоты 2 сорт;
Класс чистоты сжатого воздуха (ГОСТ 8573-1-2010)	-	1.1.1, 1.1.0, 1.0.0.
Точка росы сжатого воздуха	٥C	-40 (-70)
Точка росы азота	зота °C -4050 (
Тип осушителя сжатого воздуха	-	адсорбционный
Способ удаления масляных фракций из сжатого воздуха	-	фильтрация
		8000x2900x3100
Габариты типового контейнера	MM	10000x2900x3100
		12000x2900x3100

Поз.	Наименование	Типоразмер	Кол-во
1	Установка компрессорная винтовая	ДЭН	1
2	Установка компрессорная поршневая дожимная	кп-д	1
3	Сепаратор циклонный	СЦ	1
4	Фильтр воздушный	ФВ-1	1
5	Фильтр воздушный	ФВ-0,01	1
6	Фильтр воздушный	ФВ-0,001	1
7	Фильтр воздушный угольный	ФВ-0,003	1
8	Фильтр воздушный высокого давления	HD-(0,01/MF)	1
9	Фильтр воздушный высокого давления	HD-(0,01/SMF)	1
10	Фильтр воздушный высокого давления угольный	HD-(0,01/AK)	1
11	Осушитель адсорбционный	OBA	1
12	Установка газоразделительная адсорбционная азотная	ААУ	1
13	Ресивер горизонтальный	PF	1
14	Сепаратор водомасляный	UFS	1
15	Система интеллектуального управления	Metacentre SX	1
16	Блок-контейнер стандартный	-	1
16-1	Огнетушитель порошковый	-	6, 8 или 12
16-2	Система внутреннего и наружного освещения	-	1
16-3	Клапан воздушный автоматический	-	4 или 6
16-4	Обогреватель электрический	-	2 или 4
16-5	Арматура трубопроводная	-	1 компл.
16-6	Устройство вводно-распределительное	-	1
16-7	Таль ручная червячная на монорельсе	-	1
Іримеча	ние: поз. с 16-1 по 16-7 входят в	стандартную комплекта	цию поз.

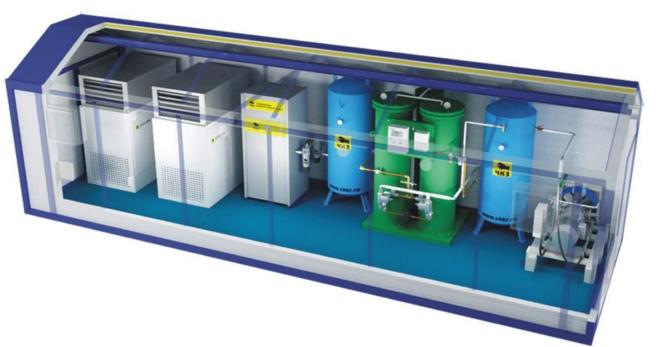

Примечание: поз. с 16-1 по 16-7 входят в стандартную комплектацию **Примечание:** спецификация дана для типовой станции и может быть изменена согласно особенностям проекта.

ПРИНЦИП ДЕЙСТВИЯ:

Винтовая маслозаполненная компрессорная установка ДЭН, основанная на двухвинтовом компрессоре **КВ**, всасывает поток атмосферного воздуха **1**. После сжатия и первичной очистки воздух охлаждается в теплообменном аппарате **AT** и поступает на дальнейшую подготовку. Масловоздушный сепаратор С1 удаляет из воздуха основную часть капельного масла и влаги. Фильтр Ф1 очищает сжатый воздух от механических примесей и продуктов износа (тонкость фильтрации 1 мкм). Адсорбционный осушитель ВД со встроенными предварительным $\Phi 2$ (тонкость фильтрации 0,01 мкм, остаточная концентрация масел 0,01 мг/м³) и последующим ФЗ (тонкость фильтрации 1 мкм) фильтрами обеспечивает удаление из сжатого воздуха влаги (стандартно точка росы -40 °C). При закрытых вентилях **ВН2** и **ВН3** и открытом **ВН1** обеспечиваются работа станции в обход осушителя ВД. Фильтр Ф4 (тонкость фильтрации 0.01 мкм, остаточная концентрация масел 0.01 мг/м 3) предотвращает попадание мелких частиц адсорбента и продуктов износа в систему, фильтр Ф5 тщательно удаляет примеси масла (остаточная концентрация 0,001 мг/м³). Фильтр **Ф6** содержит фильтрующий элемент из активированного угля и обеспечивает очистку от паров и запахов масла. Вентиль ВН6 позволяет отбирать из пневмосети поток сжатого воздуха 4 класса не ниже 1.1.1. по ГОСТ 8573-1-2010 с давлением около 1,1 МПа.

Адсорбционная газоразделительная азотная установка **Ф7** осуществляет отделение азота (объемная доля до 99,996%). Вентиль **ВН4** обеспечивает подачу потребителям сжатого азота низкого давления (0,8...1,0 МПа) потоком **2**. При необходимости азот может быть дожат поршневой компрессорной установкой **КП** (максимально до 40,0 МПа), получающей азот

из компенсационного ресивера **РС**. После дожатия азот очищается фильтрами высокого давления: $\Phi 7$ – от продуктов износа (тонкость фильтрации 0,01 мкм) и масла (остаточная концентрация масла 0,1 мг/м³); $\Phi 8$ – от масла (остаточная концентрация 0,01 мг/м³); $\Phi 9$ – от паров и запахов масла (активированный угольный фильтроэлемент). Вентиль **ВН5** позволяет отбирать поток азота высокого давления **3**. Сброс отфильтрованных газоразделительной установкой $\Phi 7$ газов потоком **7** (пермеата), как правило, воздуха, обогащенного кислородом, может осуществляться в атмосферу, в отдельный отводящий трубопровод или на сжигание.



Тепло, выделяемое при сжатии, отводится от компрессорной установки **ДЭН** с помощью встроенных вентилятора **BO** и охладителя **AT** и направляется либо за пределы контейнера потоком **8**, либо внутрь контейнера потоком **9** для обогрева и снижения электропотребления на работу обогревателей. Отделяемый в процессе работы сепараторами, фильтрами и осушителями конденсат в виде масловодяной эмульсии направляется в сепаратор **C2**, где происходит ее разделение на воду и масло. Вода может быть направлена в канализацию потоком **5**. Масло сливается потоком **6** в емкость **Б**, которая при наполнении сдается на вторичную переработку нефтепродуктов.

ПЕРЕДОВЫЕ ТЕХНИЧЕСКИЕ РЕШЕНИЯ:

БКК-4,2/10-1 ААУ-30/99,99 (4,0) "Стандарт" (ЗАО "Антипинский НПЗ")

ПКС-7,8/13-1 ААУ-30/99,999 (25,0) "Стандарт" (ОАО ДВЗ "Звезда")

БКК-4,2/10-1 ААУ-30/99,99 (4,0) "Стандарт" (ЗАО "Антипинский НПЗ")

БКК (МКС) АМУ СКП-АВ

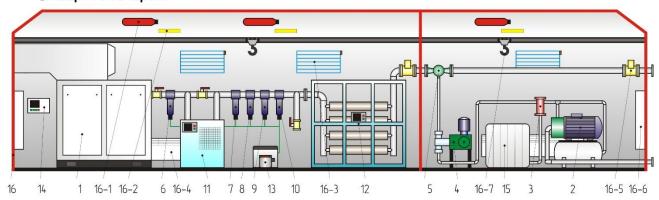
БКК (МКС) АМУ СКП-АВ – компрессорно-насосная станция пенного пожаротушения на базе компрессорных установок ДЭН, мембранной газоразделительной установки АМУ, подающей пенно-водяную смесь в среде азота низкого давления или как самостоятельную.

ПРИМЕНЕНИЕ:

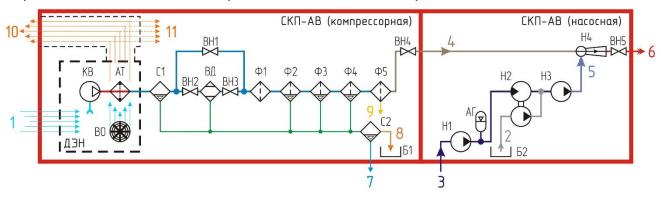
- тушение эндогенных возгораний в угольных шахтах;
- тушение возгораний на объектах с опасными средами.

ПРЕИМУЩЕСТВА:

- регулирование концентрации пенообразователя (1, 3 или 6%);
- бесступенчатое регулирование кратности компрессионной пены (отношения объема пеноводяной смеси к объему азота);
- простая смена пенообразователя путем загрузки нового бака;
- эффективное гашение пламени благодаря высокой адгезии получаемой смеси к поверхностям;
- возможность работы насосной станции в режиме пенного тушения (без подключения азотной станции);
- высокий срок службы и надежность мембранной газоразделительной установки;
- полная заводская готовность станции, доставка к месту работы стандартными транспортными средствами по дорогам общего пользования;
- **быстрый монтаж на месте** эксплуатации благодаря предустановленному оборудованию, необходимости в ровной прочной площадке (фундамент не требуется), подводе электрической и пневматической линий;
- простая передислокация станции в другое место эксплуатации.


ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ:

Параметр	Ед. изм.	Диапазон значений	
Производительность ном. смеси, н.у.	м ³ /мин	63,0200,0	
Производительность азота ном, н.у.	м ³ /мин	5,020,0	
Давление ном.	МПа	0,10,3	
Объем емкости с пенообразователем	м ³	1, 2 или 3	
Концентрации пенообразователя	%	1, 3 или 6	
Тип регулирования концентрации	-	ступенчатый	
Кратность компрессионной пены	-	320	
Климатическое исполнение (ГОСТ 15150-69)	-	У1 (УХЛ1)	
		стационарная	
Мобильность	-	на шасси автомобиля	
		на шасси прицепа	
Габариты	ММ	6000х2440х2500 (наименьшая)	
Табариты	IVIIVI	12000х2440х2500 (наибольшая)	
Macca	1/5	8000 (наименьшая)	
Iviacca	КГ	25000 (наибольшая́)	



Поз.	Наименование	Типоразмер	Кол-во
1	Установка компрессорная винтовая	ДЭН	1
2	Агрегат электронасосный центробежный с пневматическим аккумуля-		1
3	Тором		1
	Мотор-насос дозирующий		1
4	Агрегат электронасосный плунжерный		1
5	Смеситель		1
6	Сепаратор циклонный	СЦ	1
7	Фильтр воздушный	ФВ-1	1
8	Фильтр воздушный	ФВ-0,01	1
9	Фильтр воздушный	ФВ-0,001	1
10	Фильтр воздушный угольный	ФВ-0,003	1
11	Осушитель рефрижераторный	OBP	1
12	Установка газоразделительная мембранная азотная	АМУ	1
13	Сепаратор водомасляный	UFS	1
14	Система интеллектуального управления	Metacentre SX	1
15	Бак	1 м3	1
16	Блок-контейнер стандартный		1
16-1	Огнетушитель порошковый	ОСП-2	6, 8 или 12
16-2	Система внутреннего и наружного освещения		1
16-3	Клапан воздушный автоматический		4 или 6
16-4	Обогреватель электрический		2 или 4
16-5	Арматура трубопроводная	-	1 компл.
16-6	Устройство вводно-распределительное		1
16-7	Таль ручная червячная на монорельсе		1

ПРИНЦИП ДЕЙСТВИЯ:

Поток азотно-водяной пены **6** образуется путем смешения в струйном насосе **H4** потока азота низкого давления **4** и пено-водяной смеси **5**. Компрессорная установка **ДЭН** на базе винтового компрессора **КВ** всасывает окружающий атмосферный воздух потоком **1**, сжимает его и после концевого охлаждения в радиаторе **АТ** подает его под низким давлением к оборудованию дополнительной очистки. Масловоздушный сепаратор **С1** удаляет из воздуха основную часть капельного масла и влаги. Рефрижераторный осушитель **ВД** более тщательно удаляет влагу из сжатого воздуха (точка росы +3 °C). При закрытых вентилях **ВН2** и **ВН3** и открытом **ВН1** обеспечиваются работа станции в обход осушителя **ВД**.

Фильтр Ф1 очищает сжатый воздух от механических примесей и продуктов износа (тонкость фильтрации 1 мкм), фильтр Ф2 удаляет механические примеси (тонкость фильтрации 0,01 мкм) и масло (остаточная концентрация 0,01 мг/м³). Фильтр Ф3 тщательно удаляет примеси масла (остаточная концентрация 0,001 мг/м³). Фильтр Ф4 содержит фильтрующий элемент из активированного угля и обеспечивает очистку от паров и запахов масла. Мембранная азотная установка Ф5 фильтрует поступающий сжатый воздух. Сброс отфильтрованных газов потоком 9 (пермеата), как правило, воздуха, обогащенного кислородом, может осуществляться в атмосферу, в отдельный отводящий трубопровод или на сжигание. Вентиль ВН4 позволяет отключить поток азота 4 и организовать только пенно-водяное пожаротушение. Масловодяная эмульсия, отделенная на сепараторе, фильтрах и охладителе, сбрасывается в сепаратор С1, где происходит ее разделение на воду и масло. Вода сливается в канализацию потоком 7, а масло потоком 8 собирается в емкости Б1 и периодически сдается на переработку.

Центробежный насос **H1** с установленным пневматическим гидроаккумулятором **ГА** получает воду из магистрального трубопровода потоком **3** и подает ее к насосу-дозатору **H2**, который пропорционально проходящему потоку всасывает пенообразователь потоком **2** из бака **Б2**. Образующаяся смесь подается на вход плунжерному насосу **H3**, который повышает давление до рабочего. Потоком **5** пенно-водяная смесь направляется на смешивание с потоком **4** в струйном насосе **H4**.

Тепло, выделяемое при сжатии, отводится от компрессорной установки **ДЭН** с помощью встроенных вентилятора **BO** и охладителя **AT** и направляется либо за пределы контейнера потоком **10**, либо внутрь контейнера потоком **11** для обогрева и снижения электропотребления на работу обогревателей.

РАСШИФРОВКА УСЛОВНОГО ОБОЗНАЧЕНИЯ

БКК-15,5/10-2 * АМУ-461,3/95,0 (4,0) «Оптим» Нефть-Газ

БКК – исполнение станции (БКК – из единого блок-контейнера; МКС – из нескольких модулей);

15,5 – производительность сжатого воздуха номинальная, н.у., м³/мин; 10 – давление сжатого воздуха конечное номинальное избыточное, атм;

2 – количество винтовых компрессорных установок;

– после знака заводское обозначение может отсутствовать;

АМУ – тип азотной установки (АМУ – мембранная, ААУ – адсорбционная);

461,3 – производительность сжатого азота, н.у., м³/ч;

95,0 – объемная доля азота (ГОСТ 9293-74), %;

4,0 – давление азота конечное номинальное избыточное, МПа;

Стандарт – тип системы подготовки рабочей среды (Стандарт – подача воздуха на азотную установку через рефрижераторный осушитель и группу фильтров, Оптим – подача воздуха на азотную установку через адсорбционный осушитель и систему каталитического разложения углеводородов; СКП – подача воздуха на мембранную азотную установку через рефрижераторный осушитель и группу фильтров

Нефть-Газ – специфическая область применения (Нефть-Газ – для предприятий нефтегазовой отрасли; Энерго – для электростанций; АВ – для азотно-водяного пожаротушения; нет записи – общепромышленного назначения).

ПРИЛОЖЕНИЯ

ПРИЛОЖЕНИЕ А. ГОСТ 9293-74

А1. Технические требования

	Норма для марки газообразного и жидкого азота					
Наименование показателя	Особой чистоты		Повышенной чистоты		Технического	
	1-й сорт	2-й сорт	1-й сорт	2-й сорт	1-й сорт	2-й сорт
Объемная доля азота, %, не менее	99,999	99,996	99,99	99,95	99,6	99,0
Объемная доля кислорода, %, не более	0,0005	0,001	0,001	0,05	0,4	1,0
Объемная доля водяного пара в газообразном азоте, %, не более	0,0007	0,0007	0,0015	0,004	0,009	*
Содержание масла в газообразном азоте	Не определяется **					
Содержание масла, механических примесей и влаги в жидком азоте	***					
Объемная доля водорода, %, не более	0,0002	0,001	Не нормируется			
Объемная доля суммы углеродсодержащих соединений в пересчете на CH ₄ , %, не более	0,0003	0,001	Не нормируется			

^{* –} выдерживает испытание по п. 3.6 ГОСТ 9293-74;

Примечания:

- 1. Объемная доля азота включает примеси инертных газов (аргон, неон, гелий).
- 2. По согласованию с потребителем в техническом газообразном азоте 1-го сорта, транспортируемом по трубопроводу, допускается объемная доля водяного пара более 0,009%.
- 3. Допускается уменьшение количества жидкого азота вследствие его испарения при транспортировании и хранении не более чем на 10%.
- 4. Газообразный технический азот, предназначенный для авиации, следует выпускать с объемной долей водяного пара не более 0,003%. Для остальных показателей нормы должны быть не ниже соответствующих норм для технического азота 2-го сорта. 5. На воздухоразделительных установках низкого давления Кт-12, КтК-35, Кт-5 и др. и на установке Кт-3600 разрешается полу-
- чать жидкий технический азот с объемной долей азота не менее 97%.

ПРИЛОЖЕНИЕ А. ГОСТ 8573-1-2005

А1. Класс чистоты по твердым частицам

	Предельно допустимое число частиц в 1 м ³				Размер	Концентра-	
Класс	Сласс Размер частиц d , мкм			частиц, мкм	концентра- ция, мг/м ³		
	$\leq 0, 10$	$0,10 < d \le 0,5$	$0, 5 < d \le 1, 0$	$1, 0 < d \le 5, 0$	частиц, мкм	ция, ин/и	
0	В соответствие с требованиями пользователя или поставщика обо-						
U	рудования, но более жесткие, чем для класса 1						
1	Не задается	100	1	0		Не задается	
2	Не задается	100000	1000	10	Не задается		
3	Не задается	Не задается	10000	500			
4	Не задается	Не задается	Не задается	1000			
5	Не задается	Не задается	Не задается	20000			
6	Не применяется			\leq 5, 0	\leq 5, 0		
7	Не применяется			$\leq 40,0$	$\leq 10,0$		

А2. Класс чистоты по влажности и содержанию воды в жидкой фазе

Класс	Температура точки росы, °С	Концентрация воды в жидкой фазе C , Γ/M^3			
0	В соответствие с требованиями пользователя или поставщика оборудования, но более жесткие, чем для класса 1				
1	≤ − 70	Не задается			
2	≤ − 40	Не задается			
3	≤ − 20	Не задается			
4	≤ +3	Не задается			
5	≤ +7	Не задается			
6	≤ +10	Не задается			
7	Не задается	≤ 0, 5			
8	Не задается	$0, 5 < C \le 5, 0$			
9	Не задается	$5, 0 < C \le 10, 0$			

^{** –} выдерживает испытание по п. 3.7 ГОСТ 9293-74;

^{*** -} выдерживает испытание по п. 3.8 ГОСТ 9293-74;

АЗ. Класс чистоты по содержанию масел

Класс	Общая концентрация масла (в фазах аэрозолей, жидкости и паров), мг/м³
0	В соответствие с требованиями пользователя или поставщика обору- дования, но более жесткие, чем для класса 1
1	≤ 0,01
2	≤ 0, 10
3	≤ 1, 0
4	≤ 5, 0

источники

- 1. Азотные компрессорные станции ООО «ЧКЗ»: презентация // ООО «Челябинский компрессорный завод», 2015 22 с.
- 2. ГОСТ 17433-80 Промышленная чистота. Сжатый воздух. Классы загрязненности. М.: Издательство стандартов, 1980. 5 с.
- 3. ГОСТ 8573-1-2005 Сжатый воздух. Часть 1. Загрязнения и классы чистоты. М.: Стандартинформ, 2005. 12 с.
- 4. OOO «Челябинский компрессорный завод» официальный сайт. http://www.chkz.ru/.
- 5. Компрессорное оборудование в системах пневмохозяйства Рогунской ГЭС: Технические решения // ЗАО «Челябинский компрессорный завод, 2013. 24 с.
- 6. Техническое предложение БКК-42,4/13-4 для ООО «Лукойл-Коми» // ООО «Челябинский компрессорный завод», 2013 – 12 с.
- 7. Техническое предложение БКК-47/13-3 для ООО «Лукойл-Коми» // ООО «Челябинский компрессорный завод», 2014 – 12 с.
- 8. Техническое предложение БКК-67/13-2 для ОАО «Подземнефтегаз» // ООО «Челябинский компрессорный завод», 2014 – 12 с.
- 9. Техническое предложение по модернизации систем снабжения сжатым воздухом технологических процессов энергетических предприятий // ЗАО «Челябинский компрессорный завод», 2012 6 с.
- 10. Техническое решение для компаний ОАО «Русгидро» // ЗАО «Челябинский компрессорный завод», 2011 14 с.
- 11. Энергия сжатого воздуха. Каталог продукции // ООО «Челябинский компрессорный завод». Челябинск: Вензель, 2014 108 с.
- 12. Энергия сжатого воздуха. Каталог продукции // ООО «Челябинский компрессорный завод». Челябинск: Вензель, 2015 114 с.
- 13. Группа компаний «Пневмомаш» официальный сайт http://www.pnevmomash.ru/.